Novel Statistical Approaches to the Quantitative Combination of Multiple Edge Detectors
نویسندگان
چکیده
This paper aims at describing a new framework which allows for the quantitative combination of different edge detectors based on the correspondence between the outcomes of a pre-selected set of operators. This is inspired from the problem that despite the enormous amount of literature on edge detection techniques, there is no single one that performs well in every possible image context. The so-called Kappa Statistics are employed in a novel fashion to enable a sound performance evaluation of the edge maps emerged from different parameter specifications. The proposed method is unique in the sense that the balance between the false detections (False Positives and False Negatives) is explicitly assessed in advanced and incorporated in the estimation of the optimum threshold. Results of this technique are demonstrated and compared to individual edge detection methods.
منابع مشابه
QSAR modeling of antimicrobial activity with some novel 1,2,4 triazole derivatives, comparison with experimental study
Our study performed upon an extended series of 28 compounds of 1,2,4-triazole derivatives that demonstrate substantial in vitro antimicrobial activities by serial plate dilution method, using quantitative structure-activity relationship (QSAR) methods that imply analysis of correlations and multiple linear regression (MLR); a significant collection of molecular descriptors was used e.g., Edge a...
متن کاملNovel consensus quantitative structure-retention relationship method in prediction of pesticides retention time in nano-LC
In this study, quantitative structure-retention relationship (QSRR) methodology employed for modeling of the retention times of 16 banned pesticides in nano-liquid chromatography (nano-LC) column. Genetic algorithm-multiple linear regression (GA-MLR) method employed for developing global and consensus QSRR models. The best global GA-MLR model was established by adjusting GA parameters. Three de...
متن کاملOptimal edge detection using multiple operators for image understanding
Extraction of features, such as edges for the understanding of aerial images, has been an important objective since the early days of remote sensing. This work aims at describing a new framework which allows for the quantitative combination of a preselected set of edge detectors based on the correspondence between their outcomes. This is inspired from the problem that despite the enormous amoun...
متن کاملA Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملProposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms
In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006